

Impatto dei nuovi farmaci sugli aspetti cardio-renali

Dott. Olga Eugenia Disoteo

CAPTURE study shows the high incidence of CVD in people with

The study found that **1/3 of people** with T2D have established cardiovascular disease¹

9/10 people with T2D and established CVD have ASCVD¹.

18% of people with T2D experience their first CV event within the first 5–6 years post diagnosis¹

Cohort study of 34,198 patients with T2D*

Heart attacks and strokes occur over **10 years earlier** in people with T2D than those without and will occur with greater severity^{2,3}

CV, cardiovascular; HF, heart failure; MI, myocardial infarction; PAD, peripheral artery disease; T2D, type 2 diabetes; UK, United Kingdom.

*Full cohort including non-diabetic population ~1.9 million patients; †Includes stable and unstable angina; ‡Includes ischaemic stroke and stroke not further specified. §Results rounded up or down to nearest percentage point 1. Shah AD et al. Lancet Diabetes Endocrinol 2015;3:105–113; 2. Low Wang CC et al. Circulation 2016;133:2459–2502; 3. Echouffo-Tcheugui JB et al. Eur Heart J 2018;39:2376–2386.

CV mortality risk increases with increasing HbA_{1c}

Association between T2D and CV mortality (<55 years), n = 78,086¹

Data for people with T2D from the Swedish National Diabetes Register and controls without T2D matched for age, sex and county with 4.6 years mean follow-up. Multivariate analysis, adjusting for various CVD risk factors.

ASCVD, atherosclerotic cardiovascular disease; CI, confidence interval; CVD, cardiovascular disease; HbA₁₀ glycated haemoglobin; HR, hazard ratio; T2D, type 2 diabetes. 1. Tancredi M et al. N Engl J Med 2015;373:1720–1732.

Life expectancy is reduced by 12 years in people with diabetes with pre-existing ASCVD^{1,2}

Early screening and further management of cardiovascular risk among younger and newly diagnosed people with T2D is required to protect them from the risk of stroke^{1,2}.

Only 2 in 10 people with T2D and CVD or CV risk factors receive treatment proven to reduce the risk of ASCVD¹

Use of glucose-lowering agents with demonstrated CV benefit¹.

■ GLP-1 RA ■ SGLT-2i ■ GLP-1 RA and/or SGLT-2i

ASCVD, atherosclerotic cardiovascular disease; CV, cardiovascular; CVD, cardiovascular disease; GLP-1RA, glucagon-like peptide-1 receptor agonist; SGLT2i, sodium-glucose co-transporter-2 inhibitor; T2D, type 2 diabetes. GLP-1RAs included dulaglutide, liraglutide and semaglutide; and SGLT2is: canagliflozin, dapagliflozin and empagliflozin. 1. Mosenzon 0 et al. Cardiovasc Diabetol 2021;2:154.

Better HbA1c control is associated with reductions in CV events

Every 1% drop in HbA_{1c} can reduce long-term diabetes complications¹

F

STENO-2: Mortality at 21 years' follow-up

Ļ

*No formal calculation possible as <50% mortality in intensive therapy group. CI, confidence interval; HR, hazard ratio Gæde P et al. *Diabetologia* 2016;59:2298–2307

ORIGINAL ARTICLE

Rawshani A et al. *N Engl J Med* 2018;379:633–644 Risk Factors, Mortality, and Cardiovascular Outcomes in Patients with Type 2 Diabetes

B Acute Myocardial Infarcti	ion				C Stroke			
	All Patients	I	Patients without Coexistir Conditions at Baseline	ıg		All Patients		Patients without Coexisting Conditions at Baseline
Glycated hemoglobin	•	Glycated hemoglobin			Glycated hemoglobin	•	Glycated hemoglobin	•
Systolic blood pressure	•	LDL cholesterol			Systolic blood pressure	•	Systolic blood pressure	•
LDL cholesterol	•	Systolic blood pressure			Duration of diabetes	•	Physical activity	
Physical activity	•	Smoking			Physical activity	•	Duration of diabetes	
Smoking	•	Physical activity			Atrial fibrillation	•	Income	
Duration of diabetes	•	Estimated GFR			Income	•	Smoking	
Estimated GFR	•	Duration of diabetes			Marital status	•	Marital status	•
Income		Income			Smoking		Lipid-lowering medication	
Diastolic blood pressure		Diastolic blood pressure	•		Estimated GFR	•	Estimated GFR	•
Heart failure		Marital status			Lipid-lowering medication		Blood-pressure medication	
Blood-pressure medication		Education			Blood-pressure medication	•	Diastolic blood pressure	•
Marital status		Blood-pressure medication			LDL cholesterol		LDL cholesterol	
Education		Albuminuria			Diastolic blood pressure	•	Education	•
Albuminuria	•	Immigrant			Body-mass index	•	Albuminuria	
Lipid-lowering medication		Lipid-lowering medication			Heart failure	•	Body-mass index	•
Immigrant		Body-mass index			Albuminuria	•	İmmigrant	•
Atrial fibrillation					Education	•	0	
Body-mass index	D ²			p2	Immigrant	•		
0.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0	00 0.005 0.010 0.015	5 0.020	0.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.	R^2
	Increasing Importance		Increasing Important	ce		Increasing Importance		Increasing Importance

Cardiac Abnormalities of Type 2 Diabetes Increase the Risk for Heart Failure

[Ca2+]i=intracellular calcium; CMC=cardiomyocyte; DCM=diabetic cardiomyopathy; DM=diabetes mellitus; HF=heat failure; LV=left ventricular.

Jia J et al. Circ Res. 2018;122(4):624-638.

10

Ē

Microvascular complications may predate T2D diagnosis

Timeline of microvascular disease in T2D

	(MICROVASCULAR DISEASE STAGES	
Diabetic retinopathy	Mild nonproliferative abnormalities	Moderate and severe nonproliferative diabetic retinopathy (NPDR)	Proliferative diabetic retinopathy (PDR)
	Can start 7 years before diagnosis	Macular edema – <i>can occur at any time</i>	during retinopathy
Diabetic nephropathy	Microalbuminuria	Proteinuria Overt diabetic	nephropathy
	Can start before diagnosis		
Diabetic neuropathy		Intermittent pain and tingling in extremities, particularly in the feet	Pain is more intense and All pain sensation is constant lost to an area
		Usually start 10-20 years after a	liagnosis
	4–7 years	Progression of T2D	 Insulin resistance Insulin level Beta-cell function Fasting plasma glucose Hepatic glucose production
	Mic	crovascular complications	
	Impaired glucose tolerance	Diabetes	
Low Wang et al. Circulation. 2016;133:245 11 Adapted from Kendall DM et al. Am J Med. 2	9–2502; 2009:122(Suppl.6):S37–S50.	Diabetes diagnosis	

Microvascular complications of T2D

CKD, chronic kidney disease

Ē

1. NIDDK. Available from: Causes of Chronic Kidney Disease | NIDDK (nih.gov) accessed May 2021; 2. Kazancioğlu R. Kidney Int Suppl (2011) 2013; 3(4):368–371; 3. Woolfson R. Postgrad Med J 2001; 77(904):68–74; 4. Hall ME et al. Int J Nephrol Renovasc Dis 2014; 7:75–88; 5. Orr SE et al. Int J Mol Sci 2017; 18:pii: E1039

Kidney hyperfiltration is a common feature and driver of disease progression across the diverse CKD etiologies

CKD = chronic kidney disease; IgA = immunoglobulin A.

Type 2 diabetes, cardiovascular and renal disease are closely interconnected

Renal and cardiac systems are inextricably linked and should be considered together

AGEs = advanced glycation end-products; BP = blood pressure; RAAS = renin angiotensin aldosterone system; ROS = reactive oxygen species; SNS = sympathetic nervous system; T2D = type 2 diabetes.

1. Maqbool M et al. Semin Nephrol. 2018;38:217-232; 2. Ronco C et al. J Am Coll Cardiol. 2008;52:1527-39.

Early and effective control can reduce complication risks

Treating additional risk factors further reduces risks or microvascular and macrovascular complications

- Tight glucose control early in the course of T2D can reduce long-term CV outcomes
- HbA_{1c} <7% is associated with lower risk of microvascular events
- International practice guidelines encourage early glucose lowering to achieve near-normal HbA_{1c} targets

HbA₁₇ glycosylated haemoglobin; T2D, type 2 diabetes. 1. UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352:837853; 2. Holman RR et al. N Engl J Med. 2008;359:15771589; 3. Laiteerapong N et al. Diabetes Care. 2019;42:416426; 4. Cosentino F et al. Eur Heart J. 2019;00:1–69; 5. Diabetes Care. 2021;44 (Suppl. 1): S73-S84. 5. The DCCT Research Group. N Engl J Med. 1993;329:977–86.

16

Early and effective glycaemic control associated with lower microvascular and macrovascular complication risks

Diabetes and Aging Study

ISGLT 2

Evidence Supports Glycemic and Non-glycemic Effects of SGLT-2i

Dapagliflozin is not indicated for weight loss or hypertension.

1. FARXIGA® (dapagliflozin) [prescribing information]. Wilmington, DE: AstraZeneca Pharmaceuticals LP; May 2020. 2. Eickhoff MK, et al. J Clin Med. 2019;8(6);779. 3. Merovci A, et al.

J Clin Endocrinol Metab. 2015;100(5):1927-1932. 4. Kaneto H, et al. J Diabetes. 2017;9(3):219-225. 5. Bolinder J, et al. J Clin Endocrinol Metab. 2012;97(3):1020-1031. 6. Heerspink HJL, et al. Kidney Int. 2018;94(1):26-39. 7. Kalra S, et al. Indian J Endocrinol Metab. 2017;21(1):210-230. 8. Lambers Heerspink HJ, et al. Diabetes Obes Metab. 2013;15(9):853-862. 9. Verma S, et al. JACC Basic Transl Sci. 2018;3(5):575-587. 10. Tamargo J. Eur Cardiol. 2019;14(1):23-32. 11. Lee TM, et al. Free Radic Biol Med. 2017;104:298-310.

SGLT2 inhibitor on top of metformin	Empagliflozin 25 mg ¹	Canagliflozin 100 mg²	Dapagliflozin 10 mg ³	Ertugliflozin 5 mg ⁴
HbA1c, %	-0.77*	-0.73†	-0.84 [‡]	-0.7 [§]
Weight, kg	-2.46*	-3.3 [†]	-2.9 [‡]	-3.0 [§]
Systolic blood pressure, mmHg	-5.2*	-3.5†	-5.1¶	-4.4 [§]
Diastolic blood pressure, mmHg	-1.6*	-1.8 [†]	-1.8 [¶]	-1.6 [§]

SGLT2 inhibitors reduce the development and progression of HF and CKD in patients with T2D across the CV and kidney risk continuum¹

Reduced risk	CANVAS Program ^{2,3} (canagliflozin)	DECLARE-TIMI 58 ⁴ (dapagliflozin)	EMPA-REG OUTCOME ^{5,6} (empagliflozin)	VERTIS CV ⁷⁻⁹ (ertugliflozin)	CREDENCE ^{10*} (canagliflozin)
	T2D + ASCVD or ≥2 CV risk factors	T2D + established ASCVD or multiple risk factors	T2D + CVD	T2D + established ASCVD	T2D + albuminuric CKD
3P-MACE [†]		<i>p</i> =0.17		p=0.001 for non-inferiority	
		_			
CV death or HHF [‡]	p=0.002 [§]	p=0.005¶	p<0.001§	p=0.11	p<0.001
CV death [‡]	<i>p</i> =NR**	<i>p</i> =NR**	-	<i>p</i> =NR **	
		·	p<0.001 §		<i>p</i> =0.05
HHF [‡]	-	-	-	-	-
	p=0.002 [§]	<i>p</i> =NR**	p=0.002 §	<i>p</i> =0.006	<i>p</i> <0.001
Composite kidney	-	+	-		-
outcome ^{‡,‡‡}	<i>ρ</i> =NR [‡] **	<i>p</i> =NR [‡] **	<i>p</i> <0.001 ^{‡§}	<i>p</i> <0.01	p=0.00001 ^{††}

Cells coloured light blue indicate that the upper bound limit of the confidence interval for the active versus placebo comparison is below unity (<1.00)

3P-MACE, 3-point major adverse cardiovascular events; ASCVD, atherosclerotic cardiovascular disease; CKD, chronic kidney disease; HF, heart failure; HHF, hospitalisation for heart failure; NR, not reported; SGLT2, 21 sodium-glucose co-transporter-2; T2D, type 2 diabetes 1. McGuire DK et al. JAMA Cardiol 2021;6:148 2. Neal B et al. N Engl J Med 2017;377:644 3. Radholm K et al. Circulation 2018;138:458 4. Wiviott S et al. N Engl J Med 2019;380:347 5. Zinman B et al. N Engl J Med 2015;373:2117 6. Wanner C et al. N Engl J Med 2016;375:323 7. Cannon CP et al. N Engl J Med 2020;383:1425 8. Cosentino F et al. Circulation 2020;142:2205 9. Cherney DZI et al. Diabetologia 2021;64:1256 10. Perkovic V et al. N Engl J Med 2019;380:2295

SGLT2 inhibitors have an established safety profile across the CV and kidney risk continuum and are well tolerated $^{\rm 1-5}$

	CANVAS	Program ^{*1}	DECLARE-TIMI ²		EMPA-REG	OUTCOME ^{3,4}	VERTIS CV ⁵	
	Placebo	Canagliflozin	Placebo (n=8569)	Dapagliflozin (n=8574)	Placebo (n=2333)	Pooled empagliflozin (n=4687)	Placebo (n=2745)	Pooled ertugliflozin (n=5493)
	n (%)	n (%)	n (%)	n (%)	Event rate per 1000 PY	Event rate per 1000 PY	n (%)	n (%)
Patient population	T2D + . ≥2 CV r	ASCVD or isk factors	T2D + established risk fa	ASCVD or multiple actors	T2D	+ CVD	T2D + establ	ished ASCVD
Hypoglycaemia	46.4	50.0	NR	NR	650 (27.9)	1303 (27.8)	790 (28.8)	1496 (27.2)
Hypoglycaemia requiring assistance	NR	NR	83 (1.0)	58 (0.7)	36 (1.5)	63 (1.3)	162 (5.9)	285 (5.2)
Diabetic ketoacidosis	0.3	0.6	12 (0.1)	27 (0.3)	1 (<0.1)	4 (0.1)	2 (0.1)†	19 (0.3) [†]
Urinary tract infection	37.0	40.0	133 (1.6)	127 (1.5)	423 (18.1)	842 (18.0)	279 (10.2)	666 (12.1)
Genital infection	10.8 [§]	34.9 ^{‡§}	9 (0.1)	76 (0.9) [‡]	42 (1.8)	301 (6.4) [‡]	42 (1.5)	297 (5.4)
Volume depletion	18.5	26.0 [‡]	207 (2.4)	213 (2.5)	115 (4.9)	239 (5.1)	106 (3.9)	236 (4.3)
Bone fractures	11.9	15.4	440 (5.1)	457 (5.3)	91 (3.9)	179 (3.8)	98 (3.6) [†]	201 (3.7) [†]
Acute kidney injury	4.1	3.0	175 (2.0)	125 (1.5) [‡]	37 (1.6)	45 (1.0) [‡]	60 (2.2)	101 (1.8)
Lower limb amputation	3.4	6.3 [‡]	113 (1.3)	123 (1.4)	46 (1.1)	47 (1.1)**	45 (1.6) ^{††}	111 (2.0)††

1. Neal B et al. N Engl J Med 2017;377:644; 2. Wiviott S et al. N Engl J Med 2019;380:347; 3. Zinman B et al. N Engl J Med 2015;373:2117; 4. Kohler S et al. Adv Ther 2017;34:1707; 5. Cannon CP et al. N Engl J Med 2020;383:1425; 6. Empagliflozin summary of product characteristics; 8. Dapagliflozin summary of product characteristics; 9. Ertugliflozin summary of product characteristics.

Ē

SGLT2 inhibitors may improve tolerance of other heart failure therapies

ARNI, angiotensin receptor–neprilysin inhibitor; ESRD, end-stage renal disease; HF, heart failure; MRA, mineralocorticoid receptor antagonist; SGLT2(i), sodium-glucose co-transporter-2 (inhibitor).

Ę

International guidelines support the use of SGLT2 inhibitors for patients with heart failure regardless of LVEF, including in the hospital setting

Treatment for heart failure should be started regardless of LVEF

ACC, American College of Cardiology; AHA, American Heart Association; ESC, European Society of Cardiology; HFmrEF, heart failure with mildly reduced ejection fraction; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction; HFSA, Heart Failure Society of America; LVEF, left ventricular ejection fraction; SGLT2, sodium-glucose co-transporter-2.

1. Heidenreich PA et al. J Am Coll Cardiol. 2022;79:e263; 2. McDonagh T et al. Eur Heart J. 2023: doi.org/10.1093/eurheartj/ehad195

2023 KDIGO CKD Guideline: SGLT2 Inhibitors in CKD

Preview Presented at 2023 ERA Congress¹

- Recommendation 3.6.1: We recommend treating adults with CKD and heart failure or eGFR ≥20 mL/min/1.73 m² with UACR ≥200 mg/g with an SGLT2 inhibitor (1A)
- Recommendation 3.6.2: We suggest treating adults with eGFR ≥20-45 mL/min/1.73 m² with UACR <200 mg/g with an SGLT2 inhibitor (2B)

Note: Level 1 = "We recommend" and Grade A = High quality of evidence; Level 2 = "We suggest" and Grade B = Moderate quality of evidence.²

CKD = chronic kidney disease; eGFR = estimated glomerular filtration rate; ERA = European Renal Association; KDIGO = Kidney Disease: Improving Global Outcomes; SGLT2 = sodium-glucose cotransporter 2; UACR = urine albumin-to-creatinine ratio.

1. Madero M. Presented at: 60th ERA Congress; June 15-18, 2023; Milan, Italy and Virtual; 2. KDIGO. KDIGO methods manual for guideline development – December 2022.

Ad uso esclusivo del Medical Affairs.

2023 ERA Consensus Paper: Algorithm for Selection of SGLT2i in Patients With CKD, HF, or T2D

^aeGFR <60 mL/min/1.73 m² or UACR >30 mg/g; ^bWith reduced or preserved ejection fraction; ^cStart if eGFR \geq 25 mL/min/1.73 m² and continue until start of KRT; ^dStart if eGFR \geq 20 mL/min/1.73 m²; ^eStart if eGFR \geq 30 mL/min/1.73 m² and continue until start of KRT; ^fWhile all 4 drugs may be used for glycemic control with eGFR \geq 45 mL/min/1.73 m², an SGLT2i that has improved outcomes in CKD randomized controlled trials would be preferable if eGFR is 45-60 mL/min/1.73 m²; ^gEstablished atherosclerotic CV disease (coronary, peripheral vascular, or cerebral artery disease).

Mark PB et al. Online ahead of print. Nephrology Dial Transplant. 2023;gfad112.

26 Ad uso esclusivo del Medical Affairs.

Ē

AGLP 1

Effetti dei GLP1RA sul danno renale della DKD

Alicic RZ et al. Nat Rev Nephrol 2020 Nov 20

Ē

Three mechanisms may drive the effect of GLP-1 on natriuresis $(1/2)^{1,2}$

1. Muskiet MHA et al. Nat Rev Nephrol 2017;13:605-628; 2. Skov J. Rev Endocr Metab Disord 2014;15:197-207;

Potential renoprotective effect of GLP1 RA

Indirect effects

CKD, chronic kidney disease; CV, cardiovascular; CVOT, cardiovascular outcomes trial; GLP-1RA, glucagon-like peptide-1 receptor agonist; T2D, type 2 diabetes 1. Zoungas S et al. Lancet Diabetes Endocrinol 2017;5:431-437; 2. de Galan BE et al. J Am Soc Neghrol 2009;20:883-892; 3. Adler AL et al. BMJ 2000;321:412-419; 4. Bolignano D and Zoccali C. Nephrol Dial Transplant 2013;28 Suppl 4:iv82-98; 5. Marso SP et al. N Engl J Med 2016;375:311-322; 6. Marso SP et al. N Engl J Med 2016;375:1834-1844; 7. Mann J The et al. N Engl J Med 2016;375:311-322; 6.

Fig. 1 | Potential renoprotective effects of GLP1 receptor agonists. The renoprotective effects of glucagon-like peptide 1 (GLP1) receptor agonists and of conventional treatments for type 2 diabetes mellitus are additive. GLP1 receptor agonists can reduce blood pressure and plasma glucose directly (not shown), as well as indirectly (dashed arrows) via effects on body weight, atheroclerosis and the renal vasculature. RAS, renin–angiotensin system.

Effects of GLP-1 in the kidney: Outline

Renal outcomes with liraglutide and semaglutide

Direct effects of GLP-1 in the kidney

- Natriuresis
- Haemodynamic effects in the setting of diabetic glomerular hyperfiltration
- Effects on the renin-angiotensin-aldosterone system
- Reduced oxidative stress
- Anti-inflammatory effects
- Summary of the effects of liraglutide and semaglutide

Indirect effects of GLP-1 in the kidney

GLP-1, glucagon-like peptide-1; GLP-1R, glucagon-like peptide-1 receptor; RAAS, renin-angiotensin-aldosterone system

1. Pyke C et al. Endocrinology 2014;155:1280–1290; 2. Skov J. Rev Endocr Metab Disord 2014;15:197–207; 3. Jensen EP et al. Am J Physiol Renal Physiol 2015;308:F867–F877; 4. Fujita H et al. Kidney Int 2014;85:579–589

GLP1RA, Hospitalization for HF and CKD

		GLP-1 receptor agonist, n/N (%)	Placebo, n/N (%)			Hazard ratio (95% CI)	NNT (95% CI)	p value
	All-cause mortality							
	ELIXA	211/3034 (7%)	223/3034 (7%)	-		0·94 (0·78 to 1·13)		0.50
	LEADER	381/4668 (8%)	447/4672 (10%)	-		0.85 (0.74 to 0.97)		0.02
	SUSTAIN-6	62/1648 (4%)	60/1649 (4%)	-+-	_	1.05 (0.74 to 1.50)		0.79
	EXSCEL	507/7356 (7%)	584/7396 (8%)	+		0.86 (0.77 to 0.97)		0.016*
	Harmony Outcomes	196/4731 (4%)	205/4732 (4%)	+		0.95 (0.79 to 1.16)		0.64
	REWIND	536/4949 (11%)	592/4952 (12%)			0.90 (0.80 to 1.01)		0.067
	PIONEER 6	23/1591 (1%)	45/1592 (3%)			0.51 (0.31 to 0.84)		0.008
	AMPLITUDE-O	111/2717 (4%)	69/1359 (5%)			0.78 (0.58 to 1.06)		0.11
	Subtotal (l ² =10·1%, p=0·3	35)		-	12%	0-88 (0-82 to 0-94)	114 (76 to 228)	0.0001
	Hospital admission for he	art failure						
	ELIXA	122/3034 (4%)	127/3034 (4%)			0.96 (0.75 to 1.23)		0.75
	LEADER	218/4668 (5%)	248/4672 (5%)	-		0.87 (0.73 to 1.05)		0.14
	SUSTAIN-6	59/1648 (4%)	54/1649 (3%)			1·11 (0·77 to 1·61)		0.57
	EXSCEL	219/7356 (3%)	231/7396 (3%)			0·94 (0·78 to 1·13)		0.49
	Harmony Outcomes	79/4731 (2%)	111/4732 (2%)			0·71 (0·53 to 0·94)		0.019
	REWIND	213/4949 (4%)	226/4952 (5%)			0.93 (0.77 to 1.12)		0.46
	PIONEER 6	21/1591 (1%)	24/1592 (2%)		_	0·86 (0·48 to 1·55)		0.59
	AMPLITUDE-O	40/2717 (1%)	31/1359 (2%)			0.61 (0.38 to 0.98)		0.04
	Subtotal (I ² =3·0%, p=0·41	1)			11%	0.89 (0.82 to 0.98)	258 (158 to 1422)	0.013
	Composite kidney outcon	ne including macroal	buminuria					
	ELIXA	1/2/264/ (6%)	203/2639 (8%)			0-84 (0-68 to 1-02)		0.083
	LEADER	268/4668 (6%)	33//46/2 (/%)	-		0-/8 (0-6/ to 0-92)		0.003
┝	SUSTAIN-6	62/1648 (4%)	100/1649 (6%)			0.64 (0.46 to 0.88)		0.005
*	EXSCEL	366/6256 (6%)	407/6222 (7%)			0.88 (0.76 to 1.01)		0.065
	REWIND	848/4949 (17%)	970/4952 (20%)	+		0.85 (0.77 to 0.93)		0.0004
	AMPLITUDE-0	353/2717 (13%)	250/1359 (18%)	*		0.68 (0.57 to 0.79)		<0.0001
	Subtotal (l ² =47.5%, p=0.0	090)		◇ - :	21%	0·79 (0·73 to 0·87)	47 (37 to 77)	<0.0001

ORIGINAL INVESTIGATION

Open Access

GLP-1 receptor agonists and cardiorenal outcomes in type 2 diabetes: an updated meta-analysis of eight CVOTs

Dario Giugliano^{1,2*†}^(D), Lorenzo Scappaticcio^{1,2†}, Miriam Longo^{1,2†}, Paola Caruso^{1,2}, Maria Ida Maiorino³^(D), Giuseppe Bellastella¹, Antonio Ceriello⁴, Paolo Chiodini⁵ and Katherine Esposito^{2,3}

Kidney Outcomes With Glucagon-Like Peptide-1 Receptor Agonists in Patients With Type 2 Diabetes

Ofri Mosenzon,¹ Meir Schechter,¹ and Gil Leibowitz

Albuminuria categories (mg/g)

35

Summary of the 2023 ADA Standards of Care in Diabetes

- The choice of pharmacologic agents should be guided by a person-centered approach including comorbidities and treatment goals.
- In adults with T2D and **HF, CKD, and/or established/high risk of ASCVD**, the treatment regimen should **include agents that reduce cardiorenal risk** independent of background use of metformin or baseline HbA1c.

Recommended Therapy	T2D Population	Rationale	
	HF Current/prior HF symptoms with reduced or preserved EF	Reduce the risk of worsening HF and CV death, improve symptoms, physical limitations, and quality of life	
SGLT2 inhibitor ^a	CKD ^b eGFR <60 mL/min/1.73 m² OR urinary albumin ≥30 mg/g creatinine	Reduce CKD progression and CV events	
	Established ASCVD, multiple ASCVD risk factors, or CKD	Reduce the risk of MACE and/or hHF	
	CKD (if SGLT2 inhibitor not tolerated) eGFR <60 mL/min/1.73 m ² OR urinary albumin ≥30 mg/g creatinine	Reduce the risk of CV events	
OLF-I NA	Established ASCVD or multiple ASCVD risk factors	Reduce the risk of MACE	

^aUse agent with proven benefit in HF population, agent with evidence of reducing CKD progression in CKD population, and agent with proven CV disease benefit in patients with established ASCVD/multiple ASCVD risk factors/CKD; ^bRecommended for use in patients with eGFR \geq 20 mL/min/1.73 m² and urinary albumin \geq 200 mg/g creatinine (Level of evidence A). Recommended for use in patients with eGFR \geq 20 mL/min/1.73 m² and urinary albumin ranging from normal to 200 mg/g creatinine (Level of evidence B); ^cUse agent with demonstrated CV benefit in those with established ASCVD or multiple risk factors for ASCVD.

American Diabetes Association. Diabetes Care. 2023;46(suppl 1):S1-S298

ADA = American Diabetes Association; ASCVD = atherosclerotic cardiovascular disease; CKD = chronic kidney disease; CV = cardiovascular; EF = ejection fraction; eGFR = estimated glomerular filtration rate; GLP-1 RA = glucagon-like peptide-1 receptor agonist; HbA1c = glycated hemoglobin; HF = heart failure; hHF = heart failure hospitalization; MACE = major adverse cardiovascular event; SGLT2 = sodium-glucose cotransporter 2; T2D = type 2 diabetes.

Associare

GLP1 RA and SGLT-2 Inhibitors Address a Broad Range of Pathophysiologic Defects Associated With T2D¹⁻¹⁰

Ē

1. Drucker DJ Diabetes. 2015;64:317-326. 2. Campbell JE et al. Cell Metab. 2013;17:819-837. 3. Baggio LL et al. Gastroenterology. 2007;132:2131-2157. 4. Ussher JR et al. Circ Res. 2014;114:1788-1803 5. Bays H. Curr Med Res Opin. 2009;25;671-681. 6. Abdul-Ghani MA et al. Endocr Pract. 2008;14:782-790. 7. Marsenic O. Am J Kidney Dis. 2009;53:875-883. 8. Mather A et al. Kidney Int. 2011;79(suppl 120):S1-S6. 9. FARXIGA PI. 6. Inzucchi SE. Diab Vasc Dis Res. 2015;12(2):90-100. 10. Asano T et al. Curr Med Chem. 2004;11:2717-2724

37

#Expert Consensus ottenuta con metodo Delphi in un Panel di 80 Diabetologi italiani con solida esperienza clinica nel campo del diabete. Lo statement citato (n. 24) ha ottenuto un livello di agreement del 76%, in accordo con la letteratura che dimostra le proprietà anti-aterosclerotiche dei GLP-1RA.

GLP1RA, agonista del recettore del peptide 1 simile al glucagone; MACE, eventi cardiaci avversi maggiori; SGLT2i, inibitore del cotrasportatore sodio-glucosio 2.

Wilcox T et al. Diabetic Agents, From Metformin to SGLT2 Inhibitors and GLP1 Receptor Agonists. JACC 2020 Apr 28;75(16):1956-1974

Grazie